62 research outputs found

    'Flying Plasmons': Fabry-P\`erot Resonances in Levitated Silver Nanowires

    Full text link
    Plasmonic nano structures such as wire waveguides or antennas are key building blocks for novel highly integrated photonics. A quantitative understanding of the optical material properties of individual structures on the nanoscale is thus indispensable for predicting and designing the functionality of complex composite elements. In this letter we study propagating surface plasmon polaritons in single silver nanowires isolated from its environment by levitation in a linear Paul trap. Symmetry-breaking effects, e.g., from supporting substrates are completely eliminated in this way. Illuminated with white light from a supercontinuum source, Fabry-P\`erot-like resonances are observed in the scattering spectra obtained from the ends of the nanowires. The plasmonic nature of the signal is verified by local excitation and photon collection corresponding to a clean transmission measurement through a Fabry-P\`erot resonator. A numerical simulation is used to compute the complex effective refractive indices of the nanowires as input parameter for a simple Fabry-P\`erot model, which nicely reproduces the measured spectra despite the highly dispersive nature of the system. Our studies pave the way for quantitative characterization of nearly any trappable plasmonic nano object, even of fragile ones such as droplets of liquids or molten metal and of nearly any nanoresonator based on a finite waveguide with implications for modeling of complex hybrid structures featuring strong coupling or lasing. Moreover, the configuration has the potential to be complemented by gas sensors to study the impact of hot electrons on catalytic reactions nearby plasmonic particles

    Fingerprinting Defects in Hexagonal Boron Nitride via Multi-Phonon Excitation

    Full text link
    Single photon emitters in hexagonal boron nitride have gathered a lot of attention due to their favourable emission properties and the manifold of possible applications. Despite extensive scientific effort, the exact atomic origin of these emitters has remained unkown thus far. Recently, several studies have tied the emission in the yellow spectral region to carbon-related defects, but the exact atomic structure of the defects remains elusive. In this study, photoluminescence emission and excitation spectroscopy is performed on a large number of emitters within this region. By comparison of the experimental data with theoretical predictions, the origin of yellow single photon emission in hexagonal boron nitride is determined. Knowledge of this atomic structure and its optical properties is crucial for the reliable implementation of these emitters in quantum technologies

    A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices

    Full text link
    Integrated quantum optical hybrid devices consist of fundamental constituents such as single emitters and tailored photonic nanostructures. A reliable fabrication method requires the controlled deposition of active nanoparticles on arbitrary nanostructures with highest precision. Here, we describe an easily adaptable technique that employs picking and placing of nanoparticles with an atomic force microscope combined with a confocal setup. In this way, both the topography and the optical response can be monitored simultaneously before and after the assembly. The technique can be applied to arbitrary particles. Here, we focus on nanodiamonds containing single nitrogen vacancy centers, which are particularly interesting for quantum optical experiments on the single photon and single emitter level.Comment: The following article has been submitted to Review of Scientific Instruments. After it is published, it will be found at http://rsi.aip.org
    corecore